go zero微服務高在請求量下如何優化

 更新時間:2022年07月05日 16:51:58   作者:kevinwan  
這篇文章主要為大家介紹了go zero微服務高在請求量下的優化處理,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪

引言

前兩篇文章我們介紹了緩存使用的各種最佳實踐,首先介紹了緩存使用的基本姿勢,分別是如何利用go-zero自動生成的緩存和邏輯代碼中緩存代碼如何寫,接著講解了在面對緩存的穿透、擊穿、雪崩等常見問題時的解決方案,最后還重點講解了如何保證緩存的一致性。

因為緩存對于高并發服務來說實在是太重要了,所以這篇文章我們還會繼續一起學習下緩存相關的知識。

本地緩存

當我們遇到極端熱點數據查詢的時候,這個時候就要考慮本地緩存了。熱點本地緩存主要部署在應用服務器的代碼中,用于阻擋熱點查詢對于Redis等分布式緩存或者數據庫的壓力。

在我們的商城中,首頁Banner中會放一些廣告商品或者推薦商品,這些商品的信息由運營在管理后臺錄入和變更。這些商品的請求量非常大,即使是Redis也很難扛住,所以這里我們可以使用本地緩存來進行優化。

在product庫中先建一張商品運營表product_operation,為了簡化只保留必要字段,product_id為推廣運營的商品id,status為運營商品的狀態,status為1的時候會在首頁Banner中展示該商品。

CREATE TABLE `product_operation` (
  `id` bigint unsigned NOT NULL AUTO_INCREMENT,
  `product_id` bigint unsigned NOT NULL DEFAULT 0 COMMENT '商品id',
  `status` int NOT NULL DEFAULT '1' COMMENT '運營商品狀態 0-下線 1-上線',
  `create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '創建時間',
  `update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新時間',
  PRIMARY KEY (`id`),
  KEY `ix_update_time` (`update_time`)
) ENGINE=InnoDB  DEFAULT CHARSET=utf8mb4 COMMENT='商品運營表';

本地緩存的實現比較簡單,我們可以使用map來自己實現,在go-zero的collection中提供了Cache來實現本地緩存的功能,我們直接拿來用,重復造輪子從來不是一個明智的選擇,localCacheExpire為本地緩存過期時間,Cache提供了Get和Set方法,使用非常簡單

localCache, err := collection.NewCache(localCacheExpire)

先從本地緩存中查找,如果命中緩存則直接返回。沒有命中緩存的話需要先從數據庫中查詢運營位商品id,然后再聚合商品信息,最后回塞到本地緩存中。詳細代碼邏輯如下:

func (l *OperationProductsLogic) OperationProducts(in *product.OperationProductsRequest) (*product.OperationProductsResponse, error) {
  opProducts, ok := l.svcCtx.LocalCache.Get(operationProductsKey)
  if ok {
    return &product.OperationProductsResponse{Products: opProducts.([]*product.ProductItem)}, nil
  }
  pos, err := l.svcCtx.OperationModel.OperationProducts(l.ctx, validStatus)
  if err != nil {
    return nil, err
  }
  var pids []int64
  for _, p := range pos {
    pids = append(pids, p.ProductId)
  }
  products, err := l.productListLogic.productsByIds(l.ctx, pids)
  if err != nil {
    return nil, err
  }
  var pItems []*product.ProductItem
  for _, p := range products {
    pItems = append(pItems, &product.ProductItem{
      ProductId: p.Id,
      Name:      p.Name,
    })
  }
  l.svcCtx.LocalCache.Set(operationProductsKey, pItems)
  return &product.OperationProductsResponse{Products: pItems}, nil
}

使用grpurl調試工具請求接口,第一次請求cache miss后,后面的請求都會命中本地緩存,等到本地緩存過期后又會重新回源db加載數據到本地緩存中

~ grpcurl -plaintext -d '{}' 127.0.0.1:8081 product.Product.OperationProducts
{
  "products": [
    {
      "productId": "32",
      "name": "電風扇6"
    },
    {
      "productId": "31",
      "name": "電風扇5"
    },
    {
      "productId": "33",
      "name": "電風扇7"
    }
  ]
}

注意,并不是所有信息都適用于本地緩存,本地緩存的特點是請求量超高,同時業務上能夠允許一定的不一致,因為本地緩存一般不會主動做更新操作,需要等到過期后重新回源db后再更新。所以在業務中要視情況而定看是否需要使用本地緩存。

自動識別熱點數據

首頁Banner場景是由運營人員來配置的,也就是我們能提前知道可能產生的熱點數據,但有些情況我們是不能提前預知數據會成為熱點的。

所以就需要我們能自適應地自動的識別這些熱點數據,然后把這些數據提升為本地緩存。

我們維護一個滑動窗口,比如滑動窗口設置為10s,就是要統計這10s內有哪些key被高頻訪問,一個滑動窗口中對應多個Bucket,每個Bucket中對應一個map,map的key為商品的id,value為商品對應的請求次數。

接著我們可以定時的(比如10s)去統計當前所有Buckets中的key的數據,然后把這些數據導入到大頂堆中,輕而易舉的可以從大頂堆中獲取topK的key,我們可以設置一個閾值,比如在一個滑動窗口時間內某一個key訪問頻次超過500次,就認為該key為熱點key,從而自動地把該key升級為本地緩存。

緩存使用技巧

下面介紹一些緩存使用的小技巧

  • key的命名要盡量易讀,即見名知意,在易讀的前提下長度要盡可能的小,以減少資源的占用,對于value來說可以用int就盡量不要用string,對于小于N的value,redis內部有shared_object緩存。
  • 在redis使用hash的情況下進行key的拆分,同一個hash key會落到同一個redis節點,hash過大的情況下會導致內存以及請求分布的不均勻,考慮對hash進行拆分為小的hash,使得節點內存均勻避免單節點請求熱點。
  • 為了避免不存在的數據請求,導致每次請求都緩存miss直接打到數據庫中,進行空緩存的設置。
  • 緩存中需要存對象的時候,序列化盡量使用protobuf,盡可能減少數據大小。
  • 新增數據的時候要保證緩存務必存在的情況下再去操作新增,使用Expire來判斷緩存是否存在。
  • 對于存儲每日登錄場景的需求,可以使用BITSET,為了避免單個BITSET過大或者熱點,可以進行sharding。
  • 在使用sorted set的時候,避免使用zrange或者zrevrange返回過大的集合,復雜度較高。
  • 在進行緩存操作的時候盡量使用PIPELINE,但也要注意避免集合過大。
  • 避免超大的value。
  • 緩存盡量要設置過期時間。
  • 慎用全量操作命令,比如Hash類型的HGETALL、Set類型的SMEMBERS等,這些操作會對Hash和Set的底層數據結構進行全量掃描,如果數據量較多的話,會阻塞Redis主線程。
  • 獲取集合類型的全量數據可以使用SSCAN、HSCAN等命令分批返回集合中的數據,減少對主線程的阻塞。
  • 慎用MONITOR命令,MONITOR命令會把監控到的內容持續寫入輸出緩沖區,如果線上命令操作很多,輸出緩沖區很快就會溢出,會對Redis性能造成影響。
  • 生產環境禁用KEYS、FLUSHALL、FLUSHDB等命令。

結束語

已知的熱點緩存比較簡單,從數據庫中提前加載到內存中即可,未知的熱點緩存我們需要自適應的識別出熱點的數據,然后把這些熱點的數據升級為本地緩存。最后介紹了一些實際生產中緩存使用的一些小技巧,在生產環境中要活靈活用盡量避免問題的產生。

代碼倉庫: https://github.com/zhoushuguang/lebron

項目地址: https://github.com/zeromicro/go-zero

本篇文章介紹了如何使用本地熱點緩存應對超高的請求,熱點緩存又分為已知的熱點緩存和未知的熱點緩存,希望大家以后多多支持腳本之家!

相關文章

  • 深入理解Golang?Channel?的底層結構

    深入理解Golang?Channel?的底層結構

    這篇文章主要介紹了深入理解Golang?Channel?的底層結構,Go?語言的?channel?底層是什么數據結構?下面我們就一起來深入解析一下?channel,需要的朋友可以參考下
    2022-01-01
  • golang中切片copy復制和等號復制的區別介紹

    golang中切片copy復制和等號復制的區別介紹

    這篇文章主要介紹了golang中切片copy復制和等號復制的區別,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2021-04-04
  • Go Gin實現文件上傳下載的示例代碼

    Go Gin實現文件上傳下載的示例代碼

    這篇文章主要介紹了Go Gin實現文件上傳下載的示例代碼,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧
    2021-04-04
  • CMD下執行Go出現中文亂碼的解決方法

    CMD下執行Go出現中文亂碼的解決方法

    需要在Go寫的服務里面調用命令行或者批處理,并根據返回的結果做處理。但是windows下面用cmd返回中文會出現亂碼,本文就詳細的介紹一下解決方法,感興趣的可以了解一下
    2021-12-12
  • golang 后臺進程的啟動和停止操作

    golang 后臺進程的啟動和停止操作

    這篇文章主要介紹了golang 后臺進程的啟動和停止操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2021-04-04
  • Go中Channel發送和接收操作指南

    Go中Channel發送和接收操作指南

    在golang中channel屬于較為核心的一個功能,尤其在go協程中,channel功能尤為重要,下面這篇文章主要給大家介紹了關于Go中Channel發送和接收操作的相關資料,需要的朋友可以參考下
    2021-08-08
  • GoFrame框架ORM原生方法對象操作開箱體驗

    GoFrame框架ORM原生方法對象操作開箱體驗

    這篇文章主要為大家介紹了GoFrame框架ORM原生方法對象操作的開箱體驗,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪
    2022-06-06
  • golang基礎之Interface接口的使用

    golang基礎之Interface接口的使用

    這篇文章主要介紹了golang基礎之Interface接口的使用,小編覺得挺不錯的,現在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧
    2018-07-07
  • Go語言七篇入門教程三函數方法及接口

    Go語言七篇入門教程三函數方法及接口

    這篇文章主要為大家介紹了Go語言的函數方法及接口的示例詳解,本文是Go語言七篇入門系列文章,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步
    2021-11-11
  • go語言實現字符串base64編碼的方法

    go語言實現字符串base64編碼的方法

    這篇文章主要介紹了go語言實現字符串base64編碼的方法,實例分析了Go語言操作字符串的技巧及base64編碼的使用技巧,需要的朋友可以參考下
    2015-03-03

最新評論

美丽人妻被按摩中出中文字幕